MERTK-Specific Antibodies That Have Therapeutic Antitumor Activity in Mice Disrupt the Integrity of the Retinal Pigmented Epithelium in Cytopathic Monolysosome

Kerry F. White, Matthew Rausch, Jing Hua, Katherine H. Walsh, Christine E. Miller, Christopher C. Wells, Devapragasam Moodley, Benjamin H. Lee, Scott C. Chappell, Pamela M. Holland, Jonathan A. Hill

Surface Oncology, Inc., Cambridge, MA

Presented at the American Association for Cancer Research 2019 Annual Meeting | March 25, 2019 | Atlanta, GA

Background

- MERTK, a receptor for the FGF (TGF alpha, HGF, ANGPT2) family of ligands, is an emerging cancer therapeutic target in cancers driven by RTK signaling.
- MERTK activation in human tumors is associated with poor survival.
- MERTK blocks retinal pigment epithelium (RPE) injury in vivo.
- MERTK inhibition provides antitumor activity in preclinical syngeneic models.

Antibody Binding and Inhibition

Antibody Binding and Inhibition

- In vitro, MERTK blocking antibodies:
 - Showed efficacy in syngeneic murine tumor models as monotherapies and in combination with anti-PD-L1.
 - Led to gene expression changes indicative of immune cell activation and monocyte infiltration.

MERTK Blockade and the Risk of Retinal Toxicity

- MERTK Cys Retinal Toxicity Study Findings:
 - Moderate elevation of MERTK levels leads to apoptosis in RPE cells and lens fiber.
 - Inhibition of MERTK using a small molecule inhibitor leads to changes in expression of the MERTK target genes.
 - The study revealed that the antibodies blocked expression of MERTK targets in RPE.
- Key Drug: SRF1, a selective MERTK antibody, led to toxicity in the retina.

Conclusions

- A panel of fully human MERTK blocking antibodies was developed.
- In vivo, MERTK blocking antibodies:
 - Inhibited GAS6/Axl tyrosine kinases phosphorylation and COX-2 upregulation in Kausen-2 cells.
 - Reduced primary human melanoma cell/macrophage effecotricy of apoptotic Jurkat cells.
- In vivo toxicity:
 - No evidence of retinal toxicity was observed.
 - No evidence of retinal toxicity was observed.
- A multidose study in cynomolgus monkeys revealed that MERTK therapeutic antibodies disrupted the integrity of the RPE.
- Because of observed treatment-related retinal disruption, further development of therapeutic MERTK antibodies was not pursued.
- Several therapies that block MERTK function are currently in preclinical development, although the evaluation of retinal toxicity is warranted.